2vember 10-14, 2015

Cloud Computing & Linux
Shell Programming

Muhammad Moinur Rahman (1Asia)
Sumon Ahmed Sabir (Fiber@Home)
Yoshinobu Matsuzaki (11J)

GZ Kabir (BDCOM)

Suman Kumar Saha (Amber IT)

bd [Te

Bangladesh Network Operators Group

What’s Shell?

It’s acts an interface between the user and OS (kernel).It’s

known as “ command interpreter”.
When you type Is :
User
shell finds cmd (/ust/bin). \
input
shell runs cmd.

you receive the output.

AMBERIT

Unix Shell

* The Bourneshell /bin/sh (written by S. R. Bourne).

* Alongcame the people from UCB and the C-shell /bin/csh was born. Into
this shell they put several concepts which were new, (the majority of

these beingjob control and aliasing) and managed to produce a shell
that was much betterfor interactive use.

e Eventually David Korn from AT&T had the brightidea to sort out this
mess and the Korn shell /bin/ksh made its appearance. The Korn shell

became part of System V but had one major problem; unlike the rest of
the UNIX shellsit wasn't free, you had to pay AT&T for it.

Unix Shell

e Also at aboutthistimethe GNU project was underway and they decided
thatthey needed a free shell, they also decided that they wanted to
make this new shell POSIX compatible, thus bash (the Bourne again
shell) was born.

* Like the Korn shell bash was based upon the Bourne shellslanguage and
like the Korn shell, it also pinched features from the C shell and other

operating systems.

* The Bourne Shell

* The Bourneshellis the original UNIX shell program. It is very widely
used. You can startthe Bourne shell—ifit hasn't been set as your default
startup shell—bytyping "sh" or "/bin/sh" at the command prompt. This
will not spawn a new shell window, but rather will just change your
current shell to the Bourne shell.

Unix shell

* The Bourne shell supports conditional branchingin the form
of if/then/else statements. In addition, the Bourne shell
supports case statements and loops (for, while, and until).

* The Bourne shell uses the $ as a prompt.

Unix Shell

* The Korn shell

* The Kornshellis a much newer variation of the Bourne shell. It supports
everythingthe Bourneshell does, and adds features not availablein the
Bourneshell. The Korn shellis not a standard offeringin UNIX
installations. If you have the Korn shell, you can run it by typing ksh or
/bin/ksh atthe shell prompt. A publicc-domainversion of the Korn shell,
called pdksh.

* The Korn shell was originally written by David Korn and is copyrighted by
AT&T.

* The programmingstructure of the Korn shell is very similarto that of the
Bourne shell. The Korn shell, however, is more interactive.

Unix Shell

* The Cshell

* The Cshellis a very commonly used shell. Its programmingstructure
closely resembles that of the programminglanguage "C."

* The Cshell uses the "%" as a prompt.

* The Cshell supports all of the features that the Bourne shell supports,
and has a more natural syntaxfor programming.

* The Cshellis more interactive than the Bourne shell, with additional
featuresthataren't availablein older shells.

* The configurationofthe C shellis controlled by the.rcand the .login
files.

Unix Shell

* The tc shell
e The tcshellisa more modern variation ofthe C shell.
* |t reads the same configuration files that the C shell uses.

* Tcsh contains command line editing keystrokes that the C shell is missing,
and has more "modern" conveniences that the C shell lacks.

Unix Shell

* The Bourne-Again shell
* The Bourne-Again shellis avariation ofthe Bourneshell.

* [tiscommonlyusedin Linux, butis widely availablein other standard
UNIX distributions.

* The Bourne Again shellis another modification of the Bourne shell, and
uses the S as a prompt.

e To startthe Bourne Again shell, type "bash" at the shell prompt.

Basic Shell Programming

* A script is a file that contains shell commands
* data structure: variables
e control structure: sequence, decision, loop

* Shebang line for bash shell script:
#! /bin/bash
#' /bin/sh

* o run:
* make executable: ¥ chmod +x script
* invoke via: % ./script

Bash shell programming

O Input

® prompting user

® command line arguments
O Decision:

® if-then-else
® case

O Repetition
® do-while, repeat-until
e for
® select

O Functions
O Traps

User input

* shell allows to prompt for user input

Syntax:

read varname [more vars]

* or
read -p "prompt" varname [more vars]
* words entered by user are assigned to

varname and ‘more wvars”

* last variable gets rest of input line

User input example

#! /bin/sh
read -p "enter your name: " first last

echo "First name: $first"
echo "Last name: S$last"

Special shell variables

$0 Name of the current shell script

$1-%9 Positional parameters 1 through 9
$# The number of positional parameters
$* All positional parameters, “$*” is one string
S@ All positional parameters, “$(@” is a set of strings
$? Return status of most recently executed command
$$ Process id of current process

AMBER IT

Examples: Command Line Arguments

% set tim bill ann fred

1 2 3 4
S 3 3 v The ‘set’ \
% echo §$*

| . command can
tim bill ann fred be used to
% echo $# assign values to
4 positional
% echo $1 parameters

tim \\> <//
% echo $3 $4

ann fred

bash control structures

* if-then-else
* case

* loops
* for
* while
* until
* select

if statement

1f command
then
statements
fi

* statements are executed only if command succeeds, i.e. has return
status “0”

The simple if statement

1f [condition]; then
statements
fi

* executes the statements only if conditionis true

The if-then-else statement

1f [condition]; then
statements-1

else
statements-2

fi

e executes statements-1 if condition is true

e executes statements-2 if condition is false

The if...statement

1f [condition]; then
statements
elif [condition]; then
statement
else
statements
fi

* The word elif stands for “else if”
* It is part of the if statement and cannot be used by itself

Relational Operators

QGreater than

Greater than or equal -ge

Less than -1t

Less than or equal -le

Equal -eg

Not equal

strl 1s less than str2 strl < str2

strl 1s greater str2 strl > str2

String length is greater than zero -n str

String length is zero -7 str

AMBERIT

Compound logical expressions

! not

and, or
&& and __ must be enclosed within
| | or

J 1]

Example: Using the | Operator

#!/bin/bash

read -p "Enter years of work: " Years
if [' "SYears" -1t 20]; then
echo "You can retire now."

else
echo "You need 20+ years to retire"

fi

Example: Using the && Operator

#!'/bin/bash

Bonus=500

read -p "Enter Status: " Status

read -p "Enter Shift: " Shift

if [["$Status" = "H" && "$Shift" = 3]]
then

echo "shift $Shift gets \$$Bonus bonus"
else

echo "only hourly workers in"

echo "shift 3 get a bonus"
fi

Example: Using the || Operator

#!'/bin/bash

read -p "Enter calls handled:" CHandle

read -p "Enter calls closed: " CClose
if [["SCHandle" -gt 150 || "$CClose" -gt 50]]
then

echo "You are entitled to a bonus"
else
echo "You get a bonus if the calls"
echo "handled exceeds 150 or"
echo "calls closed exceeds 50"
fi

File Testing

Meaning
-d file True if file’ is a directory
-f file True if ‘file’ is an file
-r file True if ‘file’ is readable
-w file True if file’ is writable
-x file True if ‘file’ is executable

-s file True if length of ‘file’ is nonzero

Example: File Testing

#'/bin/bash
echo "Enter a filename: "
read filename
if [' -r "Sfilename"]
then
echo "File is not read-able"
exit 1

fi

Example: File Testing

#! /bin/bash

if [$# -1t 1]; then
echo "Usage: filetest filename"

exit 1
£i
if [[! -€ "$1" || ! -r "$1" || ! -w "$1T 1]
then

echo "File $1 is not accessible"
exit 1
fi

Example: if... Statement

The following THREE if-conditions produce the same result

* DOUBLE SQUARE BRACKETS
read -p "Do you want to continue?" reply
if [[$reply = "y" 1]; then
echo "You entered " $reply
fi

* SINGLE SQUARE BRACKETS
read -p "Do you want to continue?" reply
if [$reply = "y"]; then
echo "You entered " $reply
fi

* "TEST" COMMAND
read -p "Do you want to continue?" reply
if test $reply = "y"; then
echo "You entered " $reply
fi

Example: if..elif... Statement

#!/bin/bash

read -p "Enter Income Amount: " Income
read -p "Enter Expenses Amount: " Expense

let Net=$Income-SExpense

if ["SNet" -eq "O0"]; then

echo "Income and Expenses are equal - breakeven."
elif ["SNet" -gt "O0"]; then

echo "Profit of: " $Net
else

echo "Loss of: " S$Net

fi

The case Statement

* use the case statement for a decision that is based on multiple
choices

Syntax:

case word in
patternl) command-listl
pattern2) command-list2
patternN) command-1listN

esacC

case pattern

» checked against word for match

* may also contain:
*

?

[..]

[:class:]
* multiple patterns can be listed via:

Example 1: The case Statement

#!/bin/bash
echo "Enter Y to see all files including hidden files"

echo "Enter N to see all non-hidden files"
echo "Enter g to quit"

read -p "Enter your choice: " reply

case $reply in
Y|YES) echo "Displaying all (really..) files"

ls -a ;;

N|NO) echo "Display all non-hidden files..."
1s ;>

Q) exit 0 ;;

*) echo "Invalid choice!"; exit 1 ;;

esacC

Example 2: The case Statement

#!/bin/bash
ChildRate=3
AdultRate=10
SeniorRate=7
read -p "Enter your age: " age
case $age in
[1-911[1]1[0-2]) # child, if age 12 and younger
echo "your rate is" '$'"$ChildRate.00" ;;
adult, if age is between 13 and 59 inclusive
[11[3-9]11[2-5][0-9])
echo "your rate is" '$'"$AdultRate.00" ;;
[6-9]1[0-9]) # senior, if age is 60+
echo "your rate is" '$'"$SeniorRate.00" ;;

esac

Bash programming: so far

* Data structure
e Variables
* Numeric variables
* Arrays

* User input

* Control structures
* if-then-else
¢ case

Bash programming: still to come

* Control structures
* Repetition
e do-while, repeat-until
e for
e select

* Functions
* Trapping signals

Repetition Constructs

Loops

List
Controlled

Command
Controlled

while | until I for...in I select |

AMBER IT

The while Loop

* Purpose:

To execute commands in “command-list” as long as “expression”
evaluates to true

Syntax:
while [expression]

do
command-list

done

Example: Using the while Loop

#!/bin/bash
COUNTER=0
while [SCOUNTER -1t 10]

do
echo The counter is $SCOUNTER

let COUNTER=$COUNTER+1

done

Example: Using the while Loop

#!/bin/bash

Cont="Y"
while [$Cont = "Y"]; do
ps -A
read -p "want to continue? (Y/N)" reply
Cont="echo $reply | tr [:lower:] [:upper:]°
done

echo '"done"

Example: Using the while Loop

#!/bin/bash
copies files from home- into the webserver- directory

A new directory is created every hour

PICSDIR=/home/carol/pics
WEBDIR=/var/www/carol/webcam
while true; do
DATE= "date +%Y¥%m%d"
HOUR="date +%H"
mkdir $WEBDIR/"S$SDATE"
while [$HOUR -ne "00"]; do
DESTDIR=$WEBDIR/"S$DATE" /"$HOUR"
mkdir "$DESTDIR"
mv $PICSDIR/*.jpg "$DESTDIR"/

sleep 3600
HOUR="date +%H"
done

done

The until Loop

* Purpose:

To execute commands in “command-list” as long as “expression”
evaluates to false

Syntax:
until [expression]

do
command-list

done

Example: Using the until Loop

#!/bin/bash

COUNTER=20
until [$COUNTER -1t 10]
do

echo $COUNTER

let COUNTER-=1

done

Example: Using the until Loop

#!/bin/bash

Stop="N"
until [$Stop = "Y"], do
ps -A
read -p "want to stop? (Y/N)" reply
Stop="echo S$reply | tr [:lower:] [:upper:]’
done

echo '"done"

The for Loop

* Purpose:

To execute commands as many times as the number of words in the
“argument-list”

Syntax:
for variable in argument-list

do
commands

done

Example 1: The for Loop

#!/bin/bash

for i in 7 9 2 3 4 5

do
echo $i

done

Example 2: Using the for Loop

#'!'/bin/bash
compute the average weekly temperature

for num in 1 2 3 4 5 6 7

do
read -p "Enter temp for day $num: " Temp
let TempTotal=$TempTotal+$Temp

done

let AvgTemp=$TempTotal/7
echo "Average temperature: " $AvgTemp

looping over arguments

 simplest form will iterate over all command line arguments:

#! /bin/bash
for parm
do
echo $parm

done

Select command

e Constructs simple menu from word list
* Allows user to enter a number instead of a word
» User enters sequence number corresponding to the word

Syntax:
select WORD in LIST

do
RESPECTIVE-COMMANDS

done

* Loops until end of input, i.e. Ad (or “c)

Select example

#'! /bin/bash
select var in alpha beta gamma
do

echo $var 1) alpha
done 2) beta
3) gamma
* Prints: #? 2
beta
#2 4
#2 1
alpha

Select detail

e PS3 is select sub-prompt
* SREPLY is user input (the number)

#' /bin/bash
PS3="select entry or “D: "
select var in alpha beta
do

echo "SREPLY = S$Svar"

done

OutPut:

select .
1) alpha
2) beta

J
N

beta

= O N -
=

alpha

Select example

#!/bin/bash
echo "script to make files private"

echo "Select file to protect:"

select FILENAME in *

do
echo "You picked S$FILENAME (SREPLY)"
chmod go-rwx "SFILENAME"
echo "it is now private"

done

break and continue

* Interrupt for, while or until loop

* The break statement
* transfer control to the statement AFTER the done statement
* terminate execution of the loop

e The continue statement
 transfer control to the statement TO the done statement
* skip the test statements for the current iteration
e continues execution of the loop

The break command

while [condition]

do

done

echo

cmd-1
break
cmd-n

"done"

<

This 1iteration is over
and there are no more
1terations

~

/

The continue command

while [condition] <
do
.)
cmd-1 This iteration is
continue over; do the next
cmd-n 1teration)
done

echo "done"

Example:

for index in 1 2 3 45 6 7 8 9 10
do
if [$index -le 3]; then
echo "continue"
continue
fi
echo $index
if [$index -ge 8]; then
echo "break"
break
fi
done

Bash shell programming

KSequence

e Decision:
e if-then-else
* case

* Repetition
e do-while, repeat-until
* for
* select

 Functions

DONE !

/

* Traps

still to come

AMBER IT

Shell Functions

* A shell function is similar to a shell script
e stores a series of commands for execution later
* shell stores functions in memory
 shell executes a shell function in the same shell that called it

 Where to define
* In .profile

* Inyour script
* Or on the command line

* Remove a function
* Use unset built-in

Shell Functions

* must be defined before they can be referenced
* usually placed at the beginning of the script

Syntax:

function-name () {
statements

Example: function

#!/bin/bash

funky () {
This is a simple function
echo "This is a funky function."
echo "Now exiting funky function."

declaration must precede call:

funky

Example: function

#!/bin/bash

fun () { # A somewhat more complex function.
JUST A SECOND=1
let i1i=0
REPEATS=30
echo "And now the fun really begins."
while [$i -1t $SREPEATS]

do
echo "-—-———-- FUNCTIONS are fun-------- >"
sleep $JUST A SECOND
let i+=1

done

}

fun

Function parameters

* Need not be declared
* Arguments provided via function call are accessible inside function as

$1,52,S3, ...

S# reflects number of parameters
SO still contains name of script
(not name of function)

Example: function with parameter

#!' /bin/sh
testfile() {
if [$S# -gt 0]; then
if [[-£f $1 && -r $1]]; then
echo $1 is a readable file
else
echo $1 is not a readable file
fi
fi

testfile
testfile funtest

Example: function with parameters

#! /bin/bash
checkfile () {
for file
do
if [-f "$file"]; then
echo "$file is a file"
else
if [-d "$file"]; then
echo "$file is a directory"
fi
fi
done

}
checkfile . funtest

Local Variables in Functions

* Variables defined within functions are global,
i.e. their values are known throughout the entire shell program

* keyword “local” inside a function definition makes referenced
variables “local” to that function

Example: function

#! /bin/bash
global="pretty good variable"

foo () {
local inside="not so good variable"

echo $global
echo $inside
global="better variable"

echo $global
foo

echo $global
echo $inside

Handling signals

* Unix allows you to send a signal to any process

* -1 = hangup kill -HUP 1234
e -2 =interrupt with AC kill -2 1235

* no argument = terminate kill 1235

e -9 = kill kill -9 1236

e -9 cannot be blocked

* list your processes with
pPs -u userid

Signals on Linux

% kill -1

1)

5)

9)
13)
17)
21)
25)
29)
35)
39)
43)
47)
51)
55)
59)
63)

* AMCis 2-SIGINT

SIGHUP
SIGTRAP
SIGKILL
SIGPIPE
SIGCHLD
SIGTTIN
SIGXFSZ
SIGIO
SIGRTMIN+1
SIGRTMIN+5
SIGRTMIN+9
SIGRTMIN+13
SIGRTMAX-13
SIGRTMAX-9
SIGRTMAX-5
SIGRTMAX-1

2)

6)
10)
14)
18)
22)
26)
30)
36)
40)
44)
48)
52)
56)
60)
64)

SIGINT
SIGABRT
SIGUSR1
SIGALRM
SIGCONT
SIGTTOU
SIGVTALRM
SIGPWR
SIGRTMIN+2
SIGRTMIN+6
SIGRTMIN+10
SIGRTMIN+14
SIGRTMAX-12
SIGRTMAX-8
SIGRTMAX-4
SIGRTMAX

3)

7)
11)
15)
19)
23)
27)
31)
37)
41)
45)
49)
53)
57)
61)

SIGQUIT
SIGBUS
SIGSEGV
SIGTERM
SIGSTOP
SIGURG
SIGPROF
SIGSYS
SIGRTMIN+3
SIGRTMIN+7
SIGRTMIN+11
SIGRTMIN+15
SIGRTMAX-11
SIGRTMAX-7
SIGRTMAX-3

4)

8)
12)
16)
20)
24)
28)
34)
38)
42)
46)
50)
54)
58)
62)

SIGILL
SIGFPE
SIGUSR2
SIGSTKFLT
SIGTSTP
SIGXCPU
SIGWINCH
SIGRTMIN
SIGRTMIN+4
SIGRTMIN+8
SIGRTMIN+12
SIGRTMAX-14
SIGRTMAX-10
SIGRTMAX-6
SIGRTMAX-2

Handling signals

e Default action for most signals is to end process
e term: signal handler

* Bash allows to install custom signal handler

Syntax:

trap 'handler commands' signals

Example:
trap 'echo do not hangup' 1 2

Example: trap hangup

#'!' /bin/bash
kill -1 won’t kill this process
kill -2 will

trap 'echo dont hang up' 1

while true

do
echo "try to hang up"
sleep 1

done

Example: trap multiple signals

#' /bin/sh

plain kill or kill -9 will kill this
trap 'echo 1' 1

trap 'echo 2' 2

while true; do
echo -n
sleep 1

done

Example: removing temp files

#'!' /bin/bash
trap 'cleanup; exit' 2

cleanup () {
/bin/rm -f /tmp/tempfile.S.7?

}

for 1 in 1 2 3 4 5 6 7 8

do
echo "$i.iteration"
touch /tmp/tempfile.$$.51
sleep 1

done

cleanup

Restoring default handlers

* trap withoutacommand list will remove a signal handler
e Use this torun a signal handleronce only

#! /bin/sh
trap 'justonce' 2
justonce () {
echo "not yet"
trap 2 # now reset it

}

while true; do
echo -n "."
sleep 1
done

Debug Shell Programs

* Debugging is troubleshooting errors that may occur during the
execution of a program/script

* The following two commands can help you debug a bash shell script:
* echo
use explicit output statements to trace execution
* set

Debugging using “set”

* The “set” command is a shell built-in command

* has options to allow flow of execution

—v option prints each line asit is read
—x option displays the command and its arguments

—n checks for syntax errors

e options can turned on or off
e To turn on the option: set -xv
* To turn off the options: set +xv

* Options can also be set via she-bang line
#' /bin/bash -xv

Summary: Bash shell programming

/°Sequence \

e Decision:
e if-then-else
* case

* Repetition DONE !
e do-while, repeat-until
* for
* select

 Functions

* Traps

_ /

